Problem set 2

Due date: 5th Sep

Submit any four

Exercise 7. Let S be a closed subspace of a Hilbert space \mathcal{H} . Recall that the norm on the quotient space $Q = X \Big|_{S}$ is defined as $||[u]||_Q := \inf_{v \in [u]} ||v||$. Verify that the parallellogram law holds for $|| \cdot ||_Q$ and hence Q is a Hilbert space. **[Extra:** How to express the inner product on Q in terms of the inner product on \mathcal{H} ?]

Exercise 8. [*Riesz representation theorem - alternate proof*] Let \mathcal{H} be a Hilbert space. If *L* is a bounded linear functional on \mathcal{H} , show that there exists $v \in \mathcal{H}$ such that $Lu = \langle u, v \rangle$ for all $u \in \mathcal{H}$ as follows.

- (1) Show that there exists a unit vector $v \in \mathcal{H}$ such that Lv = ||L||. [Hint: Get unit vectors v_n such that $Lv_n \rightarrow ||L||$. Show that v_n is a Cauchy sequence by applying the parallellogram law to v_n and v_m .]
- (2) Let w = ||L||v. Show that $Lu = \langle u, w \rangle$ for all $u \in H$.

Exercise 9. In $L^2[0,1]$, consider the vectors¹ $f_{n,k} = \mathbf{1}_{[k2^{-n},(k+1)2^{-n}]}$ for $n \ge 0$ and $0 \le k \le 2^n - 1$. Apply Gram-Schmidt process to the functions $f_{0,0}, f_{1,0}, f_{1,1}, f_{2,0}, f_{2,1}, f_{2,2}...$ to get an orthonormal set in $L^2[0,1]$. Give the end result explicitly and show that this orthonormal set is an orthonormal basis.

Exercise 10. Let μ be a compactly supported Borel measure on \mathbb{R} so that polynomials are dense in $L^2(\mu)$. Then, $m_n(x) := x^n \in L^2(\mu)$.

- (1) Show that $\{m_0, m_1, m_2, ...\}$ is a linearly dependent set if and only if μ is supported on finitely many points.
- (2) Assume that the support of μ is not finite. Then apply Gram-Schmidt to m_0, m_1, m_2, \ldots to get polynomials $p_0, p_1, p_2 \ldots$ such that $\deg(p_k) = k$ and $\int p_k p_\ell = \delta_{k,\ell}$. Show that $\{p_k : k \ge 0\}$ is an ONB for $L^2(\mu)$. These are called orthogonal polynomials with respect to μ .
- (3) Show that there are real numbers a_n, b_n such that the *three term recurrence relationship* $xp_n(x) = b_{n-1}p_{n-1}(x) + a_np_n(x) + b_np_{n+1}(x)$ for all $n \ge 0$. Here we take $p_{-1} \equiv 0$ and $b_{-1} = 0$. [Hint: Consider the expansion of $xp_n(x)$ in the ONB $\{p_k\}$].

Exercise 11. Let u_1, \ldots, u_n be vectors in a Hilbert space \mathcal{H} . Define the $n \times n$ *Gram matrix* $A := (\langle u_i, u_j \rangle)_{i,j \le n}$ whose (i, j) entry is $\langle u_i, u_j \rangle$.

- (1) Show that A is non-negative definite. Show that A is singular if and only if u_1, \ldots, u_n are linearly dependent.
- (2) For $k \le n$ let $\mathcal{M}_k = \operatorname{span}\{u_1, \ldots, u_k\}$. Then, show that

$$|\det(A)| = ||u_1|| ||P_{\mathcal{M}_1}^{\perp} u_2|| ||P_{\mathcal{M}_2}^{\perp} u_3|| \dots ||P_{\mathcal{M}_{n-1}}^{\perp} u_n||.$$

(3) Prove Hadamard's inequality $|\det(A)| \leq \prod_{k=1}^{n} ||u_k||$.

¹Always $\mathbf{1}_A$ denotes the inicator function of the set A, that is $I_A(x) = 1$ if $x \in A$ and 0 otherwise.